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Topics addressed during last lectures and laboratory sessions:

1. Signal sampling: 

 Analytical derivation of aliasing and Nyquist-Shannon theorem.

2. The Discrete Fourier Transform:

 Analytical derivation of spectral leakage and special windowing 
functions.

Topics to be addressed in this lecture and laboratory session:

3. Identification of the main tone parameters via Interpolated DFT 
(IpDFT):

 Estimation of the main tone frequency 𝑓0, amplitude 𝐴0, phase 𝜑0.
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The main task of a synchrophasor estimation algorithm is to assess the 

parameters of the fundamental tone of a signal by using a previously 

acquired set of samples representing a portion of an acquired 

waveform (i.e., node voltage and/or branch/nodal current).

A trivial approach to estimate the parameters of the main DFT tone 

might be based on the estimation of the position of a local DFT 

maximum (i.e., say the 𝑘𝑚  bin of the spectrum) within a specific 

frequency range. Based on this approach the synchrophasor estimated 

parameters 𝑓0, 𝐴0 and 𝜑0may be computed as follows:

 መ𝑓0 = 𝑘𝑚Δ𝑓

 መ𝐴0 = 𝑋(𝑘𝑚)

 ො𝜑0 = ∠𝑋(𝑘𝑚)
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The accuracy of this trivial synchrophasor estimator is related to the accuracy in 
the location of the DFT peak. In particular the maximum error in the peak 
location is equal to half of the DFT frequency resolution Δ𝑓 =  1/𝑇, as the main 
spectrum tone may lie somewhere between the highest and 2nd highest bin of 
the DFT spectrum.

In particular it should be noticed that the relative error in the frequency 
estimation

max 𝜀𝑓,𝑟 =
max 𝜀𝑓

𝑓0
=

max|𝑘𝑚𝛥𝑓 − 𝑓0|

𝑓0
=

1

2

𝛥𝑓

𝑓0
=

1

2𝑇𝑓0
=

𝐹𝑠

2𝑁𝑓0

Is (unfortunately) maximized when 𝐹𝑆 >> 𝑓0  (i.e. for components lying in the 
beginning of the signal spectrum), that is the case of typical synchrophasor 
estimation algorithms.
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DFT interpolation
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In order to improve the accuracy of this trivial synchrophasor estimator there are 
several options:

1. Decrease the sampling frequency (see previous formula)

CONS: aliasing may arise

2. Increase the window length (i.e., improve the frequency resolution)

CONS: higher number of samples to be processed ➔ higher computation time

CONS: in order to reach high accuracy levels, very long windows are needed

3. DFT interpolation

A more exact estimation of the main spectrum tone location can be given by 
calculating the abscissa of the maximum of an interpolation curve of the DFT 
spectrum



Let’s consider a very simple discrete-time signal 𝑥(𝑛)  produced by a 

sampling process characterized by a sampling frequency 𝐹𝑆

𝑥(𝑛) = 𝐴0cos 2𝜋𝑓0𝑛𝑇𝑠 + 𝜑0

Being 𝑓0, 𝐴0 and 𝜑0 the signal frequency, amplitude and phase respectively. 
As we have seen, the input signal is sliced in portions containing N samples 

using a pre-selected windowing function 𝑤(𝑛); its DFT spectrum can be 

computed:

𝑋 𝑘 ≜
2

𝐵
෍

𝑛=0

𝑁−1

𝑤 𝑛 𝑥 𝑛 𝑊𝑁
𝑘𝑛

As known, if the window does not contain an integer number of periods 

𝑘 1/𝑓0 , 𝑘 ∈ ℕ, of the signal 𝑥(𝑛), leakage occurs. As a consequence, the 

main tone of the signal is located between two consecutives DFT bins. Its 
location can therefore be expressed as follows:

𝑘𝑝𝑒𝑎𝑘 = 𝑘𝑚 + 𝛿

being 𝑘𝑚 the index of the DFT bin characterized by the highest magnitude 

and −0.5 < 𝛿 < 0.5 a fractional correction term. 

IpDFT formulation

Signal model, time-windowing and DFT
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From the last equation, the IpDFT problem may be formulated as follows:

Based on the DFT spectrum 𝑋(𝑘) of the signal 𝑥(𝑛) analyzed with the known 

windowing function 𝑤(𝑛), find the correction term 𝛿 that better approximates 

the exact location of the main spectrum tone. 

To be noticed that 𝑘𝑝𝑒𝑎𝑘 can also be interpreted as the number of acquired 

cycles of the input signal. Therefore if:

IpDFT formulation

An intuitive interpretation
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𝑘𝑝𝑒𝑎𝑘 = 𝑘𝑚 𝛿 = 0  



coherent sampling (NO leakage)

𝑘𝑝𝑒𝑎𝑘 ≠ 𝑘𝑚  (𝛿 ≠ 0) 



incoherent sampling (LEAKAGE)

Based on the number of DFT bins used 

to perform the interpolation, IpDFT 

algorithms may be separated in 2-

points, 3-points, … DFT interpolators.
𝑘𝑝𝑒𝑎𝑘  



IpDFT formulation

Analytical formulation
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spectrum image and express the 2 highest 
bins of the DFT 𝑋 𝑘𝑚 , the highest, and 𝑋(𝑘𝑚 +
𝜀), the second highest, with 𝜀 = ±1 as a 
function of the positive spectrum image only: 

𝑋(𝑘𝑚 + 𝜀)

𝑋(𝑘𝑚)
=

𝑋(𝜔𝑚+𝜀)

𝑋(𝜔𝑚)
=

𝑊(𝜔𝑚+𝜀 − 𝜔0)

𝑊(𝜔𝑚 − 𝜔0)

=
𝑊(𝜔0 + (𝜀 − 𝛿) ⋅ 2 Τ𝜋𝐹𝑠 𝑁 − 𝜔0)

𝑊(𝜔0 − 𝛿 ⋅ 2 Τ𝜋𝐹𝑠 𝑁 − 𝜔0)

=
𝑊( (𝜀 − 𝛿) ⋅ 2 Τ𝜋𝐹𝑠 𝑁)

𝑊(−𝛿 ⋅ 2 Τ𝜋 𝑁𝐹𝑠)

Note that the DFT frequency resolution is

Δ𝜔 = 2𝜋Δ𝑓 =
2𝜋

𝑇
= 2 Τ𝜋𝐹𝑠 𝑁 and 𝛿 is unknown.

The spectrum of 𝑥(𝑛) can be expressed in terms of the positive and negative 
images of the main frequency tone at the unknown frequency 𝑓0 (or 𝜔0):

𝑋(𝜔) =
𝐴0

2
𝑒𝑗𝜑0𝑊(𝜔 − 𝜔0) +

𝐴0

2
𝑒−𝑗𝜑0𝑊(𝜔 + 𝜔0)

being 𝑊(𝜔) the Fourier transform of the selected window function. Assuming that 
the effects of leakage are properly compensated by windowing, we can neglect 

the long-range spectral leakage produced by the negative

𝑘𝑝𝑒𝑎𝑘  



Let us recall from lecture 1.3 the Fourier transform of the rectangular windowed 
signal:

ℑ 𝑤𝑅(𝑡) ⋅ 𝑥(𝑡) = ℑ 𝑤𝑅(𝑡) ⋅ 𝐴0cos(2𝜋𝑓0𝑡 + 𝜑0) = 𝑊𝑅 𝑓 ∗ 𝑋 𝑓

= A0e𝑗𝜑0𝑇 sinc 𝑓𝑇 ∗
1

2
𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0 = A0e𝑗𝜑0

𝑇

2
sinc 𝑓 − 𝑓0 𝑇 + sinc 𝑓 + 𝑓0 𝑇

Let us assume (again) that the effects of leakage are properly compensated by 
windowing, so we can neglect the long-range spectral leakage produced by 
the negative image. Therefore, we can say

ℑ 𝑤𝑅(𝑡) ⋅ 𝑥(𝑡) = A0e𝑗𝜑0
𝑇

2
sinc 𝑓 − 𝑓0 𝑇

Therefore, we have that (recall that 𝑇 = 𝑁/𝐹𝑠):

A0e𝑗𝜑0
𝑇

2
sinc 𝑓 − 𝑓0 𝑇 = A0e𝑗𝜑0𝑊𝑅 𝜔 − 𝜔0 = A0e𝑗𝜑0

𝑁

2𝐹𝑠

sin
𝜔 − 𝜔0

2
𝑁
𝐹𝑠

𝜔 − 𝜔0

2
𝑁
𝐹𝑠

=
sin

𝜔 − 𝜔0

2
𝑁
𝐹𝑠

𝜔 − 𝜔0

Let us now express the ratio 
𝑊( (𝜀−𝛿)⋅2 Τ𝜋𝐹𝑠 𝑁)

𝑊(−𝛿⋅2 Τ𝜋 𝑁𝐹𝑠)
 previously obtained by using the 

𝑊𝑅 𝜔 .

IpDFT formulation

Solution for the rectangular window
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We obtain the following for the rectangular window:

𝑊𝑅( (𝜀−𝛿)⋅2 Τ𝜋𝐹𝑠 𝑁)

𝑊𝑅(−𝛿⋅2 Τ𝜋 𝑁𝐹𝑠)
=

sin
(𝜀−𝛿)⋅2 Τ𝜋𝐹𝑠 𝑁)

2

𝑁

𝐹𝑠

(𝜀−𝛿)⋅2 Τ𝜋𝐹𝑠 𝑁)

−𝛿⋅2 Τ𝜋𝐹𝑠 𝑁

sin
−𝛿⋅2 Τ𝜋𝐹𝑠 𝑁)

2

𝑁

𝐹𝑠

sin 𝜋(𝜀−𝛿)

(𝜀−𝛿)

−𝛿

sin −𝛿𝜋
=

=
−sin −𝛿𝜋

(𝜀−𝛿)

−𝛿

sin −𝛿𝜋
=

𝛿

𝛿−𝜀

In view of the above, we can estimate 𝛿 (the only unknown) as:

መ𝛿 = 𝜀
𝑋(𝑘𝑚 + 𝜀)

𝑋(𝑘𝑚) + 𝑋(𝑘𝑚 + 𝜀)

and the signal frequency is then:
መ𝑓0 = (𝑘𝑚+ መ𝛿)Δ𝑓

IpDFT formulation

Solution for the rectangular window
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To compute the signal magnitude መ𝐴0, we may recall that we 
expressed the Fourier transform of the windowed signal as:

ℑ 𝑤𝑅(𝑡) ⋅ 𝑥(𝑡) = A0e𝑗𝜑0
𝑇

2
sinc 𝑓 − 𝑓0 𝑇

Therefore, we can express the following ratio:
መ𝐴0

𝑋(𝑘𝑚)
=

𝑋(𝑘𝑚 + 𝛿)

𝑋(𝑘𝑚)
=

𝑁

2𝐹𝑠

−𝛿 ⋅ 2 Τ𝜋𝐹𝑠 𝑁

sin
−𝛿 ⋅ 2 Τ𝜋𝐹𝑠 𝑁)

2
𝑁
𝐹𝑠

=

=
−𝛿𝜋

sin −𝛿𝜋

and solve for መ𝐴0 to get

መ𝐴0 = 𝑋(𝑘𝑚)
𝜋 መ𝛿

sin 𝜋 መ𝛿

The estimated phase can be simply expressed as
ො𝜑0 = ∠𝑋 𝑘𝑚 − 𝜋 መ𝛿

IpDFT formulation

Solution for the rectangular window
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As known the spectrum of the discrete-time Hanning window of length N may be represented as the 
following combination of “Dirichlet kernel”:

𝐷𝑁(𝜔) = 𝑒−𝑗𝜔(𝑁−1 Τ) 2
)sin(𝜔 Τ𝑁 2

)sin( Τ𝜔 2

𝑊𝐻 𝜔 = −0.25 ⋅ 𝐷𝑁 𝜔 − 2 Τ𝜋 𝑁 + 0.5 ⋅ 𝐷𝑁 𝜔 − 0.25 ⋅ 𝐷𝑁(𝜔 + 2 Τ𝜋 𝑁)

By replacing in the previously defined 2-bins ratio 𝑊 𝜔 = 𝑊𝐻(𝜔):

𝑋(𝑘𝑚 + 𝜀)

𝑋(𝑘𝑚)
=

𝑊𝐻( (𝜀 − 𝛿) ⋅ 2 Τ𝜋 𝑁)

𝑊𝐻(−𝛿 ⋅ 2 Τ𝜋 𝑁)
≃

𝛿 + 𝜀

𝛿 − 2𝜀

And, in view of the above approximated equality, we can express 𝛿 as:

መ𝛿 = 𝜀
2 𝑋(𝑘𝑚 + 𝜀) − 𝑋(𝑘𝑚)

𝑋(𝑘𝑚) + 𝑋(𝑘𝑚 + 𝜀)

and the signal parameters as:

መ𝑓0 = (𝑘𝑚+ መ𝛿)Δ𝑓 

መ𝐴0 = 𝑋(𝑘𝑚)
𝜋 መ𝛿

sin 𝜋 መ𝛿
መ𝛿2 − 1

ො𝜑0 = ∠𝑋 𝑘𝑚 − 𝜋 መ𝛿

IpDFT formulation

Solution for Hanning (Hann) window
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IpDFT-based synchrophasor estimation

Signal sampling
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IpDFT-based synchrophasor estimation

Signal windowing
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Hanning window:

𝑤𝐻 𝑛 =
1 − cos

2𝜋𝑛
𝑁

2

𝑛 ∈ [0, 𝑁 − 1]



IpDFT-based synchrophasor estimation

Discrete Fourier Transform
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2

𝐵
෍
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IpDFT-based synchrophasor estimation

Spectrum analysis: (i) DFT maximum identification
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IpDFT-based synchrophasor estimation

Spectrum analysis: (ii) DFT interpolation
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𝑥(𝑡) 𝑥(𝑛) 𝑤(𝑛) ⋅ 𝑥(𝑛) 𝑋(𝑘)

መ𝛿 = 𝜀
2 𝑋(𝑘𝑚 + 𝜀) − 𝑋(𝑘𝑚)

𝑋(𝑘𝑚) + 𝑋(𝑘𝑚 + 𝜀)

δ

𝑘𝑚

𝑘𝑚 + 𝜀
መ𝑓0 = (𝑘𝑚+ መ𝛿)Δ𝑓

መ𝐴0 = 𝑋(𝑘𝑚)
𝜋 መ𝛿

sin 𝜋 መ𝛿
መ𝛿2 − 1  

ො𝜑0 = ∠𝑋 𝑘𝑚 − 𝜋 መ𝛿
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